

The KeYmaera X Theorem Prover for Hybrid Systems Logical Systems Lab, Carnegie Mellon University

Abstract

KeYmaera X is a theorem prover for specifying and verifying correctness properties of systems that mix discrete and continuous dynamics (hybrid systems). KeYmaera X implements differential dynamic logic and provides a high degree of control over automated proof search.

Overview

KeYmaera X can automatically prove safety and liveness properties for many classes of hybrid systems.

KeYmaera X	Dashboard Mo	Iodels Proofs 2 He	lp - ტ
Hybrid Car	Auto 🎢 N	Normalize 🖸 Step back	≡
Propositional Quantifiers Hybrid Programs Differential Equations Closing			
implyR(1) & loo	op("v >= 0")(1) & on((("Induction Step", composeb(1) & choiceb(1) & assignb(1, 0::Nil) & choiceb(1, 1::Nil) & assignb(1, 1::O::Nil)), ("Base Case", QE), ("Use Ca	ute 👻
	Base Case 4	■ Use Case 5	
▼	-1: v≥0 ∧ B>0 ∧ A≥0	→ 1: [{x'=v, v'=A & v≥0 }] (v≥0 ∧ B>0 ∧ A≥0) ∧ [{x'=v, v'=0 & v≥0 }] (v≥0 ∧ B>0 ∧ A≥0) ∧ [a := -B] [{x'=v, v'=a & v≥0 }] (v≥0 ∧ B>0 ∧ A≥0)	
[]	$v{\geq}0~\wedge~B{>}0~\wedge~A{\geq}0$	$ (x'=v, v'=A \& v \ge 0] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0] [\{x'=v, v'=a \& v \ge 0 \}] (v \ge 0) $	×
	v≥0 ∧ B>0 ∧ A≥0 v≥0 ∧ B>0 ∧ A≥0	$ \vdash [\{x'=v, v'=A \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B \land 0) \land [a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B \land 0) \land (a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B \land 0) \land (a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B \land 0) \land (a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B \land 0) \land (a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land B \land 0) \land (a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land 0) \land (a := 0 \cup a := -B] [\{x'=v, v'=a \& v \ge 0\}] (v \ge 0 \land 0) \land (a := 0 \cup a := -B] [(x'=v, v'=a \boxtimes 0) \land (a := 0 \cup a := -B] [(x'=v, v'=a \land 0) \land (a := 0 \cup a := -B] [(x'=v, v'=a \land 0) \land (a := 0 \cup a := -B]](v \ge 0 \land 0) \land (a := 0 \cup a := -B] [(x'=v, v'=a \land 0) \land (a := 0 \cup a := -B]](v \ge 0 \land 0) \land (a := 0 \cup 0) \land (a := 0 \cup 0) \land (a := 0 \cup 0) \land (a := -B] [(x'=v, v'=a \land 0) \land (a := 0 \cup 0) \land (a := -B]](x'=v, v'=a \land 0) \land (a := 0 \cup 0) \land (a := 0 \lor 0) \land $	
[;]	$v{\geq}0~\wedge~B{>}0~\wedge~A{\geq}0$	$ (a := A \cup a := 0 \cup a := -B] [\{x' = v, v' = a \& v \ge 0\}] (v \ge 0 \land B > 0 \land A \ge 0) $	
loop ——	$v \ge 0 \land B > 0 \land A \ge 0$		=
• →R	$v \ge 0 \land A > 0 \land B > 0$		A –
•		$\vdash v \ge 0 \land A > 0 \land B > 0 \rightarrow [\{ \{a := A \cup a := 0 \cup a := -B \}; \{x' = v, v' = a \& v \ge 0 \} \}^*] v \ge a = -B \qquad \vdash P \qquad \qquad$	

Automatic verification is not always possible so KeYmaera X assists with partially interactive proofs.

Counter-example generation and simulation support verification tasks.

Verification and Monitor Synthesis in KeYmaera X

Monitor correctly checks deviation of model from reality

- The KeYmaera X user interface exposes tools that provide assistance during verification tasks: Automatic and customized proof search
- Interactive proving with suggestions
- Simulation and counter-example generation

Correct runtime monitors can be extracted after completing a verification task.

Example: Tactical Theorem Proving for a Simple Hybrid System

The following $d\mathcal{L}$ formula describes a safety property for a car model.

$$\underbrace{v \ge 0 \land A > 0}_{precondition} \rightarrow [(\underbrace{a := A \cup a := 0}_{ctrl}; \underbrace{p' = v}_{plan}]$$

The general-purpose tactics shipped with KeYmaera X will discover a proof for this model automatically. An efficient tactic specialized to this problem can be implemented using the tactic combinator library:

```
implyR(1) & loop({'v>=0'}, 1) <(</pre>
  master,
  master,
  implyR(1) & composeb(1) & choiceb(1) & andR(1) <(</pre>
    assignb(1) & diffSolve(1) & master,
    master
```

Try KeYmaera X!

KeYmaera X is available for download at keymaeraX.org

